H. A. Constantinidou, S. S. Hirano, L. S. Baker, & C. D. Upper. (1990) Atmospheric Dispersal of Ice Nucleation-Active Bacteria: The Role of Rain. Phytopathology, 934-937. DOI: 10.1094/Phyto-80-934 Atmospheric Dispersal of Ice Nucleation-Active Bacteria: The Role of Rain
Hoose C, Kristjánsson JE, & Burrows SM. (2010) How important is biological ice nucleation in clouds on a global scale?. Environmental Research Letters, 5(2). DOI: 10.1088/1748-9326/5/2/024009 How important is biological ice nucleation in clouds on a global scale?
Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, & Thompson BM. (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. The ISME journal, 2(3), 321-34. PMID: 18185595 The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle.
Lundheim R. (2002) Physiological and ecological significance of biological ice nucleators. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 357(1423), 937-43. PMID: 12171657 Physiological and ecological significance of biological ice nucleators.
Kerri A. Pratt, Paul J. DeMott, Jeffrey R. French, Zhien Wang, Douglas L. Westphal, Andrew J. Heymsfield, Cynthia H. Twohy, Anthony J. Prenni, & Kimberly A. Prather. (2009) In situ detection of biological particles in cloud ice-crystals. Nature Geoscience, 398-401. DOI: 10.1038/ngeo521 In situ detection of biological particles in cloud ice-crystals
A. Sesartic, U. Lohmann, & T. Storelvmo. (2011) Bacteria in the ECHAM5-HAM global climate model. Atmos. Chem. Phys. Discuss., 1457-1488. DOI: 10.5194/acpd-11-1457-2011 Bacteria in the ECHAM5-HAM global climate model