Nationale Wetenschapsquiz 2011, vraag 3:
Je kunt bij Facebook heel goed zien hoeveel vrienden jouw vrienden hebben. Hebben mensen op Facebook gemiddeld net zoveel vrienden als hún vrienden?
a. Ja.
b. Nee, gemiddeld hebben hun vrienden meer vrienden dan zij.
c. Nee, gemiddeld hebben hun vrienden minder vrienden dan zij.
Zoals je in het plaatje links kunt zien, heb ikzelf 87 vrienden. Als ik een paar vrienden aanklik, moet ik al gauw constateren dat velen een behoorlijke voorsprong op mij hebben. Zo hebben mijn Kennislinkcollega’s Ilja van Dam, Barry van der Meer en Adiël Klompmaker niet minder dan respectievelijk 171, 169 en 164 vrienden, om er een paar te noemen. Op grond van deze observatie zou ik voor antwoord B kunnen kiezen. Maar een steekproef waarin ik alleen mijzelf betrek, bewijst natuurlijk niets. Ik ken veel mensen die veel actiever zijn op Facebook dan ikzelf. Mijn redelijk passieve deelname aan het vriendennetwerk zou een verklaring kunnen zijn van het feit dat ik relatief weinig vrienden heb. Voor actieve deelnemers – en dat zijn er veel meer – geldt misschien helemaal niet dat hun vrienden méér vrienden hebben.
Een vriendennetwerk van 11 personen. Afbeelding: © NWQ
Ja, toch wel: ook voor die actieve deelnemers geldt dat hun vrienden gemiddeld meer vrienden hebben, om maar meteen het antwoord te geven. Het televisieprogramma gaf een simpel voorbeeldje ter illustratie. In bovenstaande figuur zitten 11 vrienden: Arend, Bert, Cor tot en met Karel. Twee vrienden zijn met een groen lijntje met elkaar verbonden. Het gaat nu om het gemiddelde aantal vrienden van vrienden. Dus bij elk persoon gaan we kijken hoeveel vrienden hun vrienden gemiddeld hebben. In de tabel naast het plaatje staan helemaal links de elf namen. De tweede kolom geeft aan hoeveel vrienden ieder heeft (bijvoorbeeld Arend heeft 2 vrienden: Bert en Eduard). In de derde kolom staat hoeveel vrienden die vrienden in totaal hebben (Bert heeft er 3 en Eduard 8, dus bij Arend staat 3 + 8 = 11). In de kolom rechts staat het gemiddelde daarvan (dus het aantal in de derde kolom gedeeld door het aantal in de tweede kolom; bij Arend dus 11/2 = 5,5). Wanneer de kleur groen is, betekent dat het gemiddelde aantal vrienden van vrienden hoger is dan het aantal vrienden van het persoon zelf.
In dit voorbeeld met 11 vrienden zijn er maar 2 die zelf meer vrienden hebben dan dat hun vrienden gemiddeld hebben. Maar liefst 9 vrienden, een grote meerderheid dus, hebben minder vrienden dan hun vrienden gemiddeld hebben. Je kunt dit snappen door je te realiseren dat Eduard, die 8 vrienden heeft, het gemiddelde aantal vrienden van vrienden bij die 8 vrienden enorm omhoog trekt. Dat geldt algemeen: iemand met veel vrienden trekt bij veel personen het gemiddelde aantal vrienden van vrienden omhoog.
En dan nu de wiskunde
Om inzicht te krijgen in het probleem, is zo’n voorbeeld natuurlijk verhelderend, maar een bewijs is het allerminst. Ten eerste hebben we maar één vriendennetwerk bekeken, ten tweede is dat ook nog eens een heel simpel netwerk. De Amerikaanse socioloog Scott L. Feld publiceerde in 1991 in American Journal of Sociology het artikel Why your friends have more friends than you do waarin hij een waterdicht bewijs levert van het feit dat antwoord B van de Wetenschapsquizvraag correct is, in élk vriendennetwerk (nu ja, er is één uitzondering: in een netwerk waarin iedereen exact evenveel vrienden heeft, is antwoord A juist). Er is wel wat mathematische statistiek nodig om Felds redenering te kunnen volgen.
Felds bewijs berust op het feit dat de kans dat je met iemand bevriend bent die meer vrienden heeft dan jijzelf, groter is dan de kans dat je met iemand bevriend bent die minder vrienden heeft dan jijzelf. Daaruit volgt dat de verwachtingswaarde van het aantal vrienden van vrienden groter is dan de verwachtingswaarde van het aantal vrienden van individuen.
Feld gaat bij zijn bewijs uit van een graaf, een verzameling punten waarvan sommige verbonden zijn met lijnen, precies zoals het plaatje hierboven bij het eenvoudige voorbeeld. Neem aan dat het vriendennetwerk uit n individuen bestaat, die luisteren naar de illustere namen A1, A2, …, An; dit zijn de punten in de graaf. Veronderstel dat persoon Ai binnen dit netwerk xi vrienden heeft; de waarde van elke xi is minimaal 0 (dan heb je geen enkele vriend) en maximaal n – 1 (dan ben je met iedereen bevriend). Dat betekent dat er vanuit punt Ai precies xi lijnen vertrekken, namelijk naar de vrienden van Ai. Het totale aantal lijnen L in de graaf is dan (x1 + x2 + … + xn)/2 (de deling door 2 is nodig omdat we elke lijn anders dubbel tellen: als A1 een vriend is van A2, is A2 ook een vriend van A1: die twee worden door één lijn met elkaar verbonden).
De verwachtingswaarde van het aantal vrienden van een willekeurig individu is dan gelijk aan (x1 + x2 + … + xn)/n, ofwel 2L/n. Dit is niets anders dan het gemiddelde aantal vrienden. De verwachtingswaarde van het aantal vrienden van een vriend van een individu, is wat lastiger in een formule uit te drukken. Kies een lijn uit de graaf (zo’n lijn representeert een vriendenpaar, in totaal zijn hiervoor L mogelijkheden), kies vervolgens een van de twee eindpunten van de gekozen lijn (een van de individuen van het gekozen vriendenpaar) en kijk hoeveel lijnen er vanuit dat punt vertrekken (hoeveel vrienden dat individu heeft). Doe dat voor elk van de L x 2 = x1 + x2 + … + xn mogelijke gevallen. Dat levert dan een formule op voor de verwachtingswaarde van het aantal vrienden van een vriend van een individu: (x12 + x22 + … + xn2)/(x1 + x2 + … + xn). In de teller staan precies de kwadraten van de vriendenaantallen; dat volgt uit het feit dat elk individu zo vaak wordt geteld als hij vrienden heeft.
Deze verwachtingswaarde van het aantal vrienden van een vriend van een individu is te schrijven in termen van de verwachtingswaarde (afgekort met E van expectation) en de variantie (een spreidingsmaat, afgekort Var) van het aantal vrienden X van een willekeurig individu, namelijk als E(X) + Var(X)/E(X). Met de in de statistiek veel gebruikte formule Var(X) = E(X2) – (E(X))2 is dat niet zo moeilijk om in te zien: (E(X2))/E(X) = E(X) + (E(X2) – (E(X))2)/E(X) = E(X) + Var(X)/E(X).
We hebben hiermee laten zien dat de verwachtingswaarde van het aantal vrienden van een vriend van een individu altijd minstens zo groot is als de verwachtingswaarde van het aantal vrienden van een individu. Alleen als Var(X) = 0 is er sprake van gelijkheid en dat is indien alle vrienden evenveel vrienden hebben. Hoe groter de spreiding is in het aantal vrienden van de individuen, hoe meer het gemiddelde aantal vrienden van vrienden afwijkt van het gemiddelde aantal vrienden van een individu.
Zie ook:
- Why your friends have more friends than you do (American Journal of Sociology, door Scott L. Feld)
- Why Your Friends Have More Friends Than You Do (Psychology Today, door Satoshi Kanazawa)
- This column will change your life: Ever wondered why your friends seem so much more popular than you are? There’s a reason for that (The Guardian, door Oliver Burkeman)