zaterdag 28 april 2012

Verschillende oneindigheden

Verschillende oneindigheden:
Deze column verscheen vandaag in de Volkskrant.
In onze vorige column kon u lezen dat er in Hilberts hotel, een hotel met oneindig veel kamers die genummerd zijn als 1, 2, 3, …, altijd plaats lijkt te zijn. Zelfs als elke kamer bezet is, kan een verdwaalde laatkomer toch een plekje krijgen: iedereen schuift een kamer op. En ook grotere groepen, soms zelfs oneindig groot, pasten er toch steeds weer in.
Dit gaf het gevoel dat alle oneindigheden in Hilberts hotel pasten. Maar wat betekent passen of “even groot” precies? Wiskundigen noemen groepen dingen “even groot” als je ze één op één aan elkaar kunt koppelen. Bijvoorbeeld: er zijn evenveel positieve gehele getallen (1, 2, 3, …) als positieve even getallen (2, 4, 6, …), want je kunt elk getal koppelen aan het dubbele: 1 aan 2, 2 aan 4, 3 aan 6, enzovoorts.
Dit type oneindig heet “aftelbaar”. Er is een duidelijke nummer 1 aan te wijzen, een nummer 2, enzovoorts. Je bent nooit klaar met aftellen, want de verzameling is oneindig, maar je kunt ze op een rijtje zetten, net als 2, 4, 6, … en de kamers in Hilberts hotel. Ook de verzameling van breuken, al lijkt die veel groter, is aftelbaar. Maar niet alle getallen zijn breuken: en zijn beroemde voorbeelden.
De verzameling van alle getallen tussen 0 en 1 is niet aftelbaar. Het bewijs is bijzonder elegant, maar vereist wel enig hersenwerk.
Getallen tussen 0 en 1 hebben een (oneindig lange) decimale ontwikkeling, bijvoorbeeld: \frac{1}{4} = 0,250000000 \ldots of \frac{1}{3} = 0,3333333 \ldots of \frac{1}{2}\sqrt{2} = 0,7071067812 \ldots.
Stel dat je wel een (oneindig lange) lijst kunt opstellen waar ze allemaal op staan. Wat blijkt? Hoe die lijst er ook uitziet, je kunt altijd een nieuw getal tussen 0 en 1 construeren dat niet op de lijst staat. Dat doe je als volgt. We beginnen met 0 en de komma. Nu gaan we de eerste decimaal van het nieuwe getal als volgt bepalen: als de eerste decimaal van het eerste getal op de lijst geen 2 is, kiezen we een 2, en als het wel een 2 was kiezen we een 1.
Nu verschilt de eerste decimaal van ons nieuwe getal van de eerste decimaal van het eerste getal op de lijst. We kiezen op dezelfde manier een tweede decimaal: als de tweede decimaal van het tweede getal op de lijst geen 2 is, kiezen we een 2, anders een 1. Enzovoorts.

column280412

Een voorbeeld van een hypothetische lijst met de constructie van een stukje van het nieuwe getal.


Dit nieuwe getal staat nergens op de lijst. Ga maar na: het is niet gelijk aan het eerste getal op de lijst, want de eerste decimaal verschilt. Het is ook niet gelijk aan het 37e getal, want de 37e decimaal verschilt. Kortom: het nieuwe getal ontbreekt op de lijst, wat de lijst ook was! Maar het zou er wel op moeten staan, want het is een getal tussen 0 en 1. Dat betekent dat de getallen tussen 0 en 1 niet op een lijst te zetten zijn, en er dus geen koppeling bestaat met de aftelbare verzameling 1, 2, 3, … . Echt een ander soort oneindig, dus!